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Why should you care about accurate PSF’s?

e My biased view comes from working on doing weak lensing on
large surveys, but there are there may be other potential
applications:

— Photometry in crowded regions

— Low surface brightness or barely resolved galaxies
— Galaxy morphology

— Accurate astrometry

e The CFHTLens collaboration rejected 25% of their data due to high
star-galaxy shape correlation. Source of systematic error was
unknown.



What are the important factors

e QOptical distortions, abberations
e Atmosphere

e Astrometry

e Brighter-Fatter

e Edge distortions

e Treerings

e Charge transfer efficiency

e Sampling

e Chromatic Effects

If we can model some these (WCS, chromaticity) before we try to
deal with the PSF, it makes our life easier.



PSF Reconstruction

e Use stars in the field to measure samples of the PSF
e PSF Models

— Analytic form (shapelet, wavelet, Gaussian)

— Pixel basis

— Principal component analysis (PCA)

PSF Interpolation

— Polynomial

— PCA

— Gaussian process

— Kriging

e A majority of weak lensing analyses have used some combination
of PCA and polynomial interpolation with PCA or pixel basis.



Limitations

e Potentially many free parameters
e How do you choose the optimal number of basis functions
e Polynomial

— Assume data varies smoothly, cannot capture high frequency
variations?

e Limitations to generic PCA
— Missing data and outliers
— Does not produce a generative model
— Assumes Gaussian-Linear model

e Variations to standard polynomial and PCA interpolation can
accommodate some of these issues.



How well do we need to know the PSF?

e Depends on particular science application
e Weak lensing Survey requirements:

— Euclid, HSC, DES, LSST have goals to reach accuracy of size and
ellipticity to a few tenths of a percent.

Cosmic shear requirements for DES
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Modeling the optics

e Fairly straightforward to simulate PSF due to telescope
misalignment, aberrations using eg. Zemax models.

e Wavefront data can help constrain real data.

Principal Components from Euclid Simulations
PCA Eigen Vectors

Image Credit: Cropper et. al. 2012
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Modeling the Atmosphere

e Atmospheric component scales as (Exposure Time)1/2

e Will be challenging for surveys with high cadence like LSST to
model this component. Current focus has been in using
simulations to model effects of the atmosphere.
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Star Selection

e Longer exposures mean:
— More stars are saturated
— More stars are blended

— Can push to lower S/N, but
need to worry about noisy
measurements and bias.

PSF Mag

e Can we use barely resolved .
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galaxies from multiple survey exposure for HSC
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e Combine with external
information?



More sophisticated interpolation techniques

e The literature is full of potential new methods that can overcome
some of the current limitations.

e Have yet to be fully vetted with real data.
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The Truth?

e How do you characterize the

uncertainty in your estimate of Probablistic graphical model of
the PSF? Can you predict the shear inference

posterior and marginalize for PSF Parameters
science?

e This will depend on how well

your basis set can model the
PP @

e Quite a bit of recent work in this
area (see Schneider et al. 2014)

e Need to consider computational
feasibility.

Image Credit: Schneider et. al. 2014
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DES Science Verification Data
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PSF Characteristics ’

DARK ENERGY

e Seeing larger than expected, but has significantly improved SURMEY
e Ellipticity quite small!
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PSF Model <’~

DARK ENERGY

e We use PSFex written by E. Bertin to model the PSF. SURMEY
e Use an independent reduction from general processing
e Each CCD is modeled independently

— Input stars are selected using automated algorithm in size vs.
mag plane.

— Remove brightest 3 magnitudes to reduce brighter-fatter effect.
— Excise regions with known problems.

— Pixel basis with 2x oversampling.

— Use 13 arcsec cutouts of stars to avoid truncation.

— Interpolation uses 2"9 order polynomial over CCD to describe
spatial variation.



Residual Statistics
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Size Residuals as a function of Magnitude
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DARK ENERGY

e Deviations below the requirements for SV data SURMEY
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Residuals as a function of chip position

DARK ENERGY

e Deviations as expected and below the requirements SURVER
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DARK ENERGY
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Residual Correlation function ’

DARK ENERGY

e Correlation of residuals for a single-band SURIEY
— Bands show cosmic shear requirements

— Reduced even further if you combine data from different filters.
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Principal Component Analysis <’~

DARK ENERGY

e Performed a Principal Component Analysis from the same SURIEY
data to look for common patterns across the focal plane

e Purely empirical model that solves for shapelet coefficients in
cells over each exposure.

e Could potentially use to diagnose telescope problems?
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Principal Component Comparison

DARK ENERGY

e Comparison of whisker pattern shows similarities for tilt SURVEY

Calculation of tilt

Principal Component
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Principal Component Comparison ’

DARK ENERGY

e Comparison of whisker pattern shows similarities for decenter =**
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Beyond an Empirical PCA <’~

DARK ENERGY

e The PCA did not show an improvement over simple SURMEY
polynomial fit.

e Did not see anything significant correlation between PC and
telescope measurements.

e Can probably do better using information from wavefront
Sensors.



Using Wavefront Sensors

e Aaron Roodman and Chris

Davis have been working .
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Conclusions <’~

DARK ENERGY

e Many interesting areas for improvement of PSF modeling SURNEY
— Combining optical and atmospheric components
— Probabilistic PSFs
— New interpolation methods

e PSF modeling for DES Science Verification is in good shape
— Simple model/CCD works well
— Close to meeting requirements for 5 year data
— Working to incorporate additional features in the model
— Currently using these models to ensure accurate galaxy shapes
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